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A Series Transformation for Diaphragm-Type

Discontinuities in Waveguide

T. E. ROZZI AND G. DE VRIJ

Abstract—In treating the problem of the inductive/capacitive
diaphragm in waveguide with the integral equation or the moments
method, it is often necessary to compute the matrix elements of the
guide dyadic in terms of the aperture eigenmodes of the diaphragm.
A transformation of the original series is presented that displays
superior convergence properties of the numerical solution.

In the dynamic solution of the problem of the inductive/capaci-

tive diaphragm in rectangular waveguide by means of the variational
method, the integral-equation method [1 ], [2], or the method of the

moments [3 ]– [5 ], it is often necessary to compute the matrix ele-
ments of the waveguide Green’s function in terms of the diaphragm

eigenrnodes, i.e.,

Wat

Here, ~m denotes the mth eigenmode of the iris (of aperture d), and

the kernel K is

. ‘n7rx mm’
K(x, J) = ~ rn sin ———sin — .

n> 1 w w
(2)

w is the broad,lnarrow dimension of the guide for the inductive/

capacitive iris, respectively, r is the propagation constant, and the
sum includes all the nonpropagating modes (n> 1). In terms of the
~’s, the tzth eigenmode of the guide can be written as

imx
=; ii, Pmc$m(.), 2?mr sin fir

sin — Pm. = —.
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and

for a symmetrical iris. The asymmetrical case proceeds on analogous

lines, Introducing (3) and (2) in (1), the matrix elements Iv& can be
written as

where n is odd, a = row/d, and b=kw/d.
The series S appearing in (4) is convergent, but only as fast as

1/n8 and, since proper uniform convergence occurs only after s-zhas

become larger than a and b, the situation will deteriorate with an
increasing number of iris eigenmodes taken into account.

Pcles occur whenever m/n = w/d or k/n= w/d. A more advanta-

geous way of computing (4) is illustrated in the following. Fcr
simplicity we take the iris to be inductwe. The capacitive case
follows on analogous lines. We can separate the quasi-static contribu-

tion from the dynamic contribution in (4) by writing

n sinz n.r
S= SO+ SD=~

n (n’ – a’) (n’ – b’)

+= (+”)’i”’””
n (W.’– ai)(fi~ _ ~z)– “ (5)

Since

‘r’=~(’-:(%)’+”’”-’))‘“+m)‘n-

the series SD, the difference between the dynamic and static contribu-

tion, converges very rapidly. The static series SO is odd in the summa-
tion variable n and, as such, does not lend itself to the application of
standard summation techniques. We can, however, turn this into an
even series thanks to the following device [2, pp. 582–583 ], Letting u
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denote a real parameter >0, we write

SO=zo+zn=x
w. sinz nr. tanh nu

. (w.’ – a’) (W2 – b’)

for u “not too small. ” ZD converges very rapidly, while ZO is even in

n and lends itself to summation by contour integration. We begin
by writing

= -; [S, - s,], (n odd) (7)

where, for brevity of notation, we temporarily included here the term

n = 1 in the summation.
We can now sum S1 and S, by contour integration [6]. Poles of

f,(z) ‘z exP 2z% tanh UZ/(Z2 –d’) (zz–bz) occur at z= ~ a, t b, and
y i(w.rr/2u). Therefore,
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and S2 is obtained by letting r+O in (9).
Substituting in (7) and using (4)–(6) we finally obtain the required

matrix element as

4W
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sinz far
?k=l

nm

()2n sinh --- cosh’~ r – ~~z m
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In spite of its cumbersome look, (9) is computationally much more

satisfactory than the original series (4). In fact, the resonant behavior

is confined to the first series in (9), where the second series in (9),
representing the static contribution, converges as fast as

and it depends, therefore, upon the value of (rr/2) –r = (T/2) (d/w),

i.e., the ratio of the aperture to waveguide dimensions. For given n
and c >0, the “optimum” value of u is determined from the condition

I lf(rz, U) –M(n+k, u) I <e (k arbitrary), which is tantamount to
requiring uniform convergence. This, however, involves the solution

of rather bulky transcendental equations in u. Since convergence

after the first few terms is rather insensitive to the value of u in a
relative] y large range O <u< 1, a more convenient method of ensuring

uniform convergence was preferred. This consisted in takhg for u
the smallest value such that the term (1 – tanh nu) – (n – (W/~)rJ
in the (potentially resonant) first series of (9) is less than e for a (ap-
proximately) given n. This method is obviously not optimal and other

criteria could be given to yield a satisfactory estimate of u.
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Fig. 1. Matrix element MN as a function of number of terms in the series.
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Fig. 2. Matrix element A417.
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Fig. 3. Matrix element Mm.

As an example, the matrix element MU was computed for the fol.
lowing values of the parameters: d/w= 0.4190 and d/h= 0.3431 by
means of (4) and (9). With these dimensions, the fundamental mode

of the guide is above cutoff and its contribution does not appear in
the series (4). This is tantamount to taking I’, =0 in (9).

The results are shown in Fig. 1, where the sum of the series trun-
cated after terms (N= (n+ 1)/2) is plotted against N for various

values of u. The curve corresponding to u = O is the original series (4),

as can be seen by inspection of (5) and (6).

No resonance can occur in lvfn. An example of its occurrence is
ill ustrate~ in Fig. 2, where the result of truncating the series in the
matrix element &f17 after N terms is plotted against N. For a sym-
metrical aperture, k, = 7 corresponds to a four-term modal develop-

ment. A resonance peak appears as n approaches 17, since then k/n

= 7/17=0.419 =d/w and its contribution to the sum is only slowly

compensated by that of following terms of the opposite sign. It f ol-
10WS that no fewer than 200 terms will be needed in order to achieve a
fourth decimal accuracy. The situation deteriorates for larger values

of m and k. The same accuracy is achieved after 10 terms of the modi-
fied serie:i, with the value u set equal to 1/5 by a simple estimate.

As zt–>0, a resonance begins to show also in the transformed series,

as it shou Id do, by continuity. The appearance of two resonances for
m and k larger than unity is illustrated in Fig. 3 (W= 5, k= 9).

ACKNOWLEDGMENT

The a ~thors wish to thank Dr. A. Douglas for his interest and sug-

gestions, They also wish to thank Dr. W. Mecklenbr%uker aud

J. de Groot for their helpful discussions.

REFERENCES

[1] J. %hw,nger and D. Saxon, Discontttiuiti.s in Wczzwguid.$. London, England:
Gordon and Breach, 1968, ch. III.

[2] R. E. Collin, Field Tlwwy of Guided Waves. New York: McGraw-Hill, 1960,
ch. S.

[3] $acF4i;rri&m, Field Com@siation by the Mom.%t Method. New >’ork:

[4] S. W. L~e, W: R. jones, and J. J. Campbell, “Convergence of numerical solutions
of iris-t>,pe dwmntinuity probl ems,” IEEE Trans. Microwaue Theovy Tech.. \,ol.
MTT.19, pp. 528-536, Jmw 1971.

[5] A. Wex! e~, “Solution of waveguide discontirruities b y modal analysis, ” IEEE
Trans. J4zcrowave Thecwy Tech., vol. MTT- 15, pp. 508–517, Sept. 1967.

[6] P. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1. New York:
McGraw-Hill, 1953, pp. 41>414.

Time-Delay Limits Set by Dispersion

in Magnetostatic Delay Lines

M. BIN I, L. MI LLANTA, N. RUBINO, AND II. TOGNETTI

Abstract-Analysis and experiments show the extreme dkper-
sion of magnetostatic delay lines. A suitable parameter to charac-
terize the amount of dispersion present has been found to be the
maximum output energy contained in a time interval equal to the
input puke duration. The time occurrence of this maximum value
gives a convenient measure of the group delay. The pulse shape and
energy content versus delay have been determined both theoretical y
and experimentally for axially magnetized circular rods. The results
show that delays beyond two to three times the input puke duration
cannot be obtained with more than 50 percent of the output energy
contained within the original puke duration.

I. THEORY

The m~gnetostatic-wave group delay in axially magnetized ferrite

rods has been expressed as [1]

T,(u) “ = (1)
u—w,

where tic is the cutoff angular frequency of the volume modes and
~ =~mfi ( I + @)w/@q~ 1 is a parameter taking care of the ferrite

sample ar d the mode involved, q being the ratio of diameter to
length of the rod and j~m the n,th root of the wzth-order Bessel func-

tion. In our case we deal with the (1, 1) mode, joI = 2,405 [2]. Equa-

tion (1) assumes a parabolic internal field profile.z
To investigate the amount of dispersion introduced by the mag-

netostatic line, we want to derive the output signal corresponding to
a rectangular pulse-modulated input frequency ao. To do this we
assume a I ransfer function A (u) exp j~ (o) with A (oj = const = A, and
+(u) approximated by a power expansion with the terms up to the
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1 Our theory and ‘experim&rts refer to two-pori” dela y lines (input-t&output

transmission) whereas [1] deals with one-port (pulse-echo) delay lines. The factor o!
2 appearing in [1] is not, therefore, included here.

2 For a more accurate computation, th~ Sommerfeld [3] field profile could be
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