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A Series Transformation for Diaphragm-Type
Discontinuities in Waveguide

T. E. ROZZI axp G. pe VRI]J

Abstract—In treating the problem of the inductive/capacitive
diaphragm in waveguide with the integral equation or the moments
method, it is often necessary to compute the matrix elements of the
guide dyadic in terms of the aperture eigenmodes of the diaphragm.
A transformation of the original series is presented that displays
superior convergence properties of the numerical solution.

In the dynamic solution of the problem of the inductive/capaci-
tive diaphragm in rectangular waveguide by means of the variational
method, the integral-equation method [1], [2], or the method of the
moments [3]-[5], it is often necessary to compute the matrix ele-
ments of the waveguide Green’s function in terms of the diaphragm
eigenmodes, i.e.,
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Here, ¢, denotes the mth eigenmode of the iris (of aperture d), and
the kernel X is
nrx nrx'
K(x, &) = Z Tpsin —— sin —— @
n>1 w w
w is the broad/narrow dimension of the guide for the inductive/
capacitive iris, respectively, I' is the propagation constant, and the
sum includes all the nonpropagating modes (#>1). In terms of the
¢'s, the nth eigenmode of the guide can be written as
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for a symmetrical iris. The asymmetrical case proceeds on analogous
lines. Introducing (3) and (2) in (1), the matrix elements M, can be
written as

and
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where # is odd, e =mw/d, and b=Fkw/d.

The series .S appearing in (4) is convergent, but only as fast as
1/n® and, since proper uniform convergence occurs only after # has
become larger than a and b, the situation will deteriorate with an
increasing number of iris eigenmodes taken into account.

Poles occur whenever m/n~w/d or k/n~w/d A more advanta-
geous way of computmg (4) is illustrated in the following. For
simplicity we take the iris to be inductive. The capacitive case
follows on analogous lines. We can separate the quasi-static contribu-
tion {from the dynamic contribution in (4) by writing
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the series Sp, the difference between the dynamic and static contribu-
tion, converges very rapidly. The static series .Sy is odd in the summa-
tion variable # and, as such, does not lend itself to the application of
standard summation techniques. We can, however, turn this into an
even series thanks to the following device [2, pp. 582-583]. Letting u
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denote a real parameter >0, we write
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for u “not too small.” Zp converges very rapidly, while Z, is even in
7 and lends itself to summation by contour integration. We begin

by writing
b;)]
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where, for brevity of notation, we temporarily included here the term
n=1 in the summation.
We can now sum 5) and S; by contour integration [6]. Poles of

fi(2) =3 exp 2izr tanh uz/(32—d?) (s2—b?%) occur at 2= +a, +5, and
+4(nxw/2u). Therefore,
kig
sin @ (21 - ~)
Si= — —0 tanh au ~————2—
! 2(a? — b?) Ta
COS ———
2
sin b (21 - 7—r>
— tanh bu N Y + i i
b 2u? 5
cos —
n smhﬂ (-r — 7:)
4
o = ®
) + ) ) cosh E

and S: is obtained by letting 7—0 in (9).
Substituting in (7) and using (4)—(6) we finally obtain the required
matrix element as
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In spite of its cumbersome look, (9) is computationally much more
satisfactory than the original series (4). In fact, the resonant behavior
is confined to the first series in (9), where the second series in (9),
representing the static contribution, converges as fast as

wer [ =G

and it depends, therefore, upon the value of (x/2) —r=(x/2) (d/w),
i.e., the ratio of the aperture to Wavegulde dimensions. For given n
and >0, the “optimum” value of « is determined from the condition
| M(n, u)—M(n+k, u)| <e (k arbitrary), which is tantamount to
requiring uniform convergence. This, however, involves the solution
of rather bulky transcendental equations in u. Since convergence
after the first few terms is rather insensitive to the value of « in a
relatively large range 0 <u <1, a more convenient method of ensuring
uniform convergence was preferred. This consisted in taking for #
the smallest value such that the term (1—tanh nu) — (n— (w/x)Tys)
in the (potentxally resonant) first series of (9) is less than e for a (ap-
proximately) glven n. This method is obviously not optimal and other
criteria could be given to yield a satisfactory estimate of .
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Fig. 3. Matrix element M.

As an example, the matrix element M1, was computed for the fol-
lowing values of the parameters: d/w=0.4190 and d/x=0.3431 by
means of (4) and (9). With these dimensions, the fundamental mode
of the guide is above cutoff and its contribution does not appear in
the series (4). This is tantamount to taking I''=0 in (9).

The results are shown in Fig. 1, where the sum of the series trun-
cated after terms (N=(n+1)/2) is plotted against N for various
values of #. The curve corresponding to # =0 is the original series (4),
as can be seen by inspection of (5) and (6).
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No resonance can occur in M. An example of its occurrence is
illustrated in Fig. 2, where the result of truncating the series in the
matrix element Mj; after N terms is plotted against N. For a sym-
metrical aperture, k=7 corresponds to a four-term modal develop-
ment. A resonance peak appears as # approaches 17, since then 2/n
=7/172~0.419 =d/w and its contribution to the sum is only slowly
compensated by that of following terms of the opposite sign. It fol-
lows that no fewer than 200 terms will be needed in order to achieve a
fourth decimal accuracy. The situation deteriorates for larger values
of m and k. The same accuracy is achieved after 10 terms of the modi-
fied series, with the value « set equal to 1/5 by a simple estimate,

As u—»0, a resonance begins to show also in the transformed series,
as it should do, by continuity. The appearance of two resonances for
m and k larger than unity is illustrated in Fig. 3 (m =35, k=9).
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Time-Delay Limits Set by Dispersion
in Magnetostatic Delay Lines

M. BINI, L. MILLANTA, N. RUBINO, anp V. TOGNETTI

Abstrect——Analysis and experiments show the extreme disper-
sion of magnetostatic delay lines. A suitable parameter to charac-
terize the amount of dispersion present has been found to be the
mazximum output energy contained in a time interval equal to the
input pulse duration. The time occurrence of this maximum value
gives a convenient measure of the group delay. The pulse shape and
energy content versus delay have been determined both theoretically
and experimentally for axially magnetized circular rods. The results
show that delays beyond two to three times the input pulse duration
cannot be obtained with more than 50 percent of the output energy
contained within the original pulse duration.

1. TaEORY

The magnetostatic-wave group delay in axially magnetized ferrite
rods has been expressed as 1]

m

where «; is the cutoff angular frequency of the volume modes and
a=fun(l+¢%%/+/3¢* ! is a parameter taking care of the ferrite
sample ard the mode involved, ¢ being the ratio of diameter to
length of the rod and j.. the nth root of the mth-order Bessel func-
tion. In our case we deal with the (1, 1) mode, jn =2.405 [2]. Equa-
tion (1) assumes a parabolic internal field profile.2

To investigate the amount of dispersion introduced by the mag-
netostatic line, we want to derive the output signal corresponding to
a rectangular pulse-modulated input frequency wo. To do this we
assume a transfer function 4 (w) exp j¢(w) with 4 (w) =const=4, and
¢(w) approximated by a power expansion with the terms up to the
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1 Qur theory and experiments refer to two-port delay lines (input-to-output
transmission) whereas [1] deals with one-port (pulse-echo) delay lines. The factor ot
2 appearmg in [1] is not, therefore, included here,

2 For a more accurate computation, the Sommerfeld {3] field profile could be
introduced. The improvement, however. did not show to be substantial for the
commonly used aspect ratios, ¢ =0.2 * .3 [4].



